apply.bias.corrections()
|
Apply bias corrections to model outputs |
assign.sigma.Q()
|
Assign observational errors to observed demand quantities |
calc.elas.actual()
|
Calculate actual elasticities using numerical derivatives. |
calc.hicks.actual()
|
Calculate the actual Hicks elasticities using the Slutsky equation. |
calc.pop.weight()
|
Calculate a weight factor based on the population. |
calc1eps()
|
Calculate the exponents in the demand equation. |
calc1q()
|
Calculate demand quantities for a single set of inputs |
calculate.ambrosia.params()
|
Calculates the 11 parameters for ambrosia using data calculated by create.dataset.for.parameter.fit by maximizing log likelihood |
compute.bias.corrections()
|
Compute regional bias corrections. |
create.dataset.for.parameter.fit()
|
Create dataset with observational error for log likelihood calculation using clustering. |
eta.constant() eta.s() eta.n()
|
Generate an income elasticity function with constant income elasticity. |
food.dmnd.byincome()
|
Tabulate food demand by per-capita-income |
food.dmnd.byyear()
|
Tabulate food demand by year for a model. |
food.dmnd()
|
Calculate food demand using the Edmonds, et al. model. |
lamks2nu1y0()
|
Convert the lambda and ks parameters to nu1 and y0 |
make.byincome.plot()
|
Plot model results by per-capita income |
make.byyear.plot()
|
Plot model results by year |
make.demand.plot()
|
Plot staple, nonstaple, and total demand output from the model |
mc.food.dmnd.byyear()
|
Compute food demand by year |
mc.make.byyear.plot()
|
Make the by-year plot for a set of monte carlo results by sampling the distribution |
mc.setup()
|
Create a posterior log-pdf function for monte carlo sampling the model parameters. |
mcparam.clip.tails()
|
Filter a Monte Carlo distribution by quantiles |
mcparam.density()
|
Create a density plot for all of the MC variables |
mcparam.itercount()
|
Get the iteration count for a monte carlo dataset. |
mcparam.ML()
|
Get the maximum a-posteriori (MAP) parameters |
mcparam.sample()
|
Sample the MC results using bootstrap sampling. |
merge(<trn.tst>)
|
Create a merged dataset with training and test data, each labeled accordingly |
namemc()
|
Return the list of names for the parameters in the model. |
plohi
|
Recommended parameter limits for the model. |
prepare.obs()
|
Prepare observations for use in the model. |
read.mc.data()
|
Read the Monte Carlo results file |
recursive.partition()
|
Partition input data into clusters with a minimum number of members |
runapp()
|
Launch the interactive GCAM food demand model |
y.vals Ps.vals Pn.vals Pm.vals samp.params x1 x0
|
Sample values for the demand model. |
vec2param()
|
Convert a vector of parameters into a params structure. |