Skip to contents

The wrapper function that runs the entire workflow from climate data processing to yield shock estimation to agricultural productivity change calculation for the Global Change Analysis Model (GCAM).

Usage

yield_impact(
  pr_hist_ncdf = NULL,
  pr_proj_ncdf = NULL,
  tas_hist_ncdf = NULL,
  tas_proj_ncdf = NULL,
  timestep = "monthly",
  historical_periods = NULL,
  climate_hist_dir = NULL,
  climate_impact_dir = NULL,
  climate_model = "gcm",
  climate_scenario = "rcp",
  member = "member",
  bias_adj = "ba",
  cfe = "no-cfe",
  gcam_version = "gcam7",
  gcam_timestep = 5,
  gcamdata_dir = NULL,
  crop_calendar_file = NULL,
  crop_select = NULL,
  use_default_coeff = FALSE,
  base_year = 2015,
  start_year = NULL,
  end_year = NULL,
  smooth_window = 20,
  co2_hist = NULL,
  co2_proj = NULL,
  diagnostics = TRUE,
  output_dir = file.path(getwd(), "output")
)

Arguments

pr_hist_ncdf

Default = NULL. List of paths for historical precipitation NetCDF files from ISIMIP

pr_proj_ncdf

Default = NULL. List of paths for projected precipitation NetCDF files from ISIMIP

tas_hist_ncdf

Default = NULL. List of paths for historical temperature NetCDF files from ISIMIP

tas_proj_ncdf

Default = NULL. List of paths for projected temperature NetCDF files from ISIMIP

timestep

Default = 'monthly'. String for input climate data time step (e.g., 'monthly', 'daily')

historical_periods

Default = NULL. Vector for years to subset from the historical climate data. If NULL, use the default climate data period

climate_hist_dir

Default = NULL. String for path to the historical precipitation and temperature files by irrigation type and crop type. The climate files must follow the same structure as the output of the weighted_climate function. Provide path to this argument when pr_hist_ncdf and tas_hist_ncdf are NULL.

climate_impact_dir

Default = NULL. String for path to the projected precipitation and temperature files by irrigation type and crop type. The climate files must follow the same structure as the output of the weighted_climate function. Provide path to this argument when pr_proj_ncdf and tas_proj_ncdf are NULL.

climate_model

Default = 'gcm'. String for climate model name (e.g., 'CanESM5')

climate_scenario

Default = 'rcp'. String for climate scenario name (e.g., 'ssp245')

member

Default = 'member'. String for the ensemble member name

bias_adj

Default = 'ba'. String for the dataset used for climate data bias adjustment

cfe

Default = 'no-cfe'. String for whether the yield impact formula implemented CO2 fertilization effect

gcam_version

Default = 'gcam7'. String for the GCAM version. Only support gcam6 and gcam7

gcam_timestep

Default = 5. Integer for the time step of GCAM (Select either 1 or 5 years for GCAM use)

gcamdata_dir

Default = NULL. String for directory to the gcamdata folder within the specific GCAM version. The gcamdata need to be run with drake to have the CSV outputs beforehand.

crop_calendar_file

Default = NULL. String for the path of the crop calendar file. If crop_calendar_file is provided, crop_select will be set to crops in crop calendar. User provided crop_calendar_file can include any crops MIRCA2000 crops: "wheat", "maize", "rice", "barley", "rye", "millet", "sorghum", "soybean", "sunflower", "root_tuber", "cassava", "sugarcane", "sugarbeet", "oil_palm", "rape_seed", "groundnuts", "pulses", "citrus", "date_palm", "grapes", "cotton", "cocoa", "coffee", "others_perennial", "fodder_grasses", "other_annual"

crop_select

Default = NULL. Vector of strings for the selected crops from our database. If NULL, the default crops will be used in the crop calendar: c("cassava", "cotton", "maize", "rice", "root_tuber", "sorghum", "soybean", "sugarbeet", "sugarcane", "sunflower", "wheat"). The additional crops available for selection from our crop calendar database are: "barley", "groundnuts", "millet", "pulses", "rape_seed", "rye"

use_default_coeff

Default = FALSE. Binary for using default regression coefficients. Set to TRUE will use the default coefficients instead of calculating coefficients from the historical climate data.

base_year

Default = 2015. Integer for the base year (for GCAM)

start_year

Default = NULL. Integer for the start year of the projected data

end_year

Default = NULL. Integer for the end year of the projected data

smooth_window

Default = 20. Integer for smoothing window in years

co2_hist

Default = NULL. Data table for historical CO2 concentration in columns [year, co2_conc]. If NULL, use built-in CO2 emission data

co2_proj

Default = NULL. Data table for projected CO2 concentration in columns [year, co2_conc]. If NULL, use built-in CO2 emission data

diagnostics

Default = TRUE. Logical for performing diagnostic plot

output_dir

Default = file.path(getwd(), 'output'). String for output directory

Value

A data frame of formatted agricultural productivity change for GCAM