
Global Change Analysis Model (GCAM)  Joint Global Change Research Institute (JGCRI) 
Core Model Proposal #377  04/22/2024 

 
 

 
 
 

Core Model Proposal #377: 
Breaking out food processing sector in GCAM  

 

 

Product: Global Change Analysis Model (GCAM) 
 
Institution: Joint Global Change Research Institute (JGCRI) 
 
Authors: Simone Speizer, Xin Zhao, Jae Edmonds, Stephanie Waldhoff, Pralit Patel, Siddarth 
Durga 
 
Reviewers: Marshall Wise, Maridee Weber, and Ellie Lochner  
 
Date committed: 5/16/2024 

IR document number: PNNL-35942 

 

Related sectors: Energy and Agriculture 
 
Type of development: Data, Code, and Queries 

Purpose: This Core Model Proposal (CMP) expands the representation of detailed industry (CMP-
326) in GCAM by separating the food processing sector from the aggregate “other industry sector”. 
Historical energy use is calibrated to IEA data for food processing, with some infilling for regions 
with limited IEA data. Food processing is linked to the GCAM food demand module, setting the 
energy demand for food processing in future periods based on food demand. While the direct price 
feedback is currently muted and the linkage is represented at the aggregated regional level, this 
CMP establishes the groundwork for a more detailed connection between the agrifood sectors and 
energy sectors in future work. 
 
 



 

i 
 

Contents 
1. Introduction .......................................................................................................................................... 1 

Fig. 1 Share of energy use in total industry sectors that is allocated to food processing in the raw 
IEA Energy Balances data, at a GCAM region level. .......................................................................... 2 

Fig. 2 Energy used in the food processing sector (food and tobacco) by fuel in the IEA Energy 
Balances raw data in 2015 at a GCAM region level. ........................................................................... 2 

2. Description of changes (Methods) ....................................................................................................... 3 

2.1. Sector structure ............................................................................................................................. 3 

Fig. 3 Structure of the food processing sector, including technologies and fuels used for process heat 
generation, inputs to the overall food processing sector, and the link to food demand. ...................... 3 

Fig. 4 Linkage between food demand and food processing, indicating how food demand sets the 
demand for food processing energy use. .............................................................................................. 5 

2.2. Calibration and energy use data infilling ...................................................................................... 5 

Fig. 5 Food processing energy use, before and after infilling, for regions where infilling is 
performed. ............................................................................................................................................ 7 

2.3. Linking primary agricultural supply to food demand ................................................................... 8 

Fig. 6: Food processing total energy use coefficients by region, before and after infilling, in 2015. .. 9 

2.4. Technology specifications............................................................................................................. 9 

2.4.1. Technology costs................................................................................................................... 9 

2.4.2. Technology coefficients ...................................................................................................... 11 

2.4.3. Technology vintage and retirement ..................................................................................... 11 

2.4.4. Share weights and logit ....................................................................................................... 11 

2.4.5. Water use ............................................................................................................................ 12 

2.4.6. Emissions ............................................................................................................................ 12 

2.5. Overview of key changes in GCAM, gcamdata, and Model Interface queries ........................... 13 

Table 1 key data and code changes made in gcamdata and queries .................................................. 13 

3. Shared policy assumption (SPA) GCAM validation runs .................................................................. 14 

4. Future work ........................................................................................................................................ 26 

5. Supplementary information ................................................................................................................ 28 

Table S1 Regionally-specific intercepts of the linear model used for estimating total food processing 
energy use based on calorie consumption and GDP data. .................................................................. 28 

Table S2 Global technology food processing non-energy costs. ....................................................... 29 

Table S3 Regional food processing overall supplysector non-energy costs. ..................................... 30 

Table S4 Process heat food processing technology coefficients. ...................................................... 31 

Table S5 Food processing technology vintage and retirement assumptions. .................................... 32 

Fig. S1: Food processing sector energy use by fuel from the IEA Energy Balances raw data, only for 
regions and years that meet the criteria for sufficient data detailed above......................................... 33 

References ................................................................................................................................................... 34 



 

1 
 

1. Introduction  

The food processing sector is highly heterogeneous, generating outputs ranging from dairy products and 
canned fruits to baked goods and prepared meals using a wide range of processes. Though energy 
consumption per dollar value of product tends to be low, food processing is a large source of 
manufacturing energy demand in some regions (Figs. 1 & 2). Most energy use in the sector is for low 
temperature heat, primarily process heating and drying. The main emissions reduction strategies for the 
sector include energy efficiency improvements, heat recovery, combined heat and power systems, 
electrification of heat, and fuel switching to renewables (particularly solar thermal heating systems). 
Understanding food processing energy use and its associated costs is important for accurately evaluating 
food prices, as well as for developing a complete accounting of the emissions associated with the food 
system and assessing how these emissions evolve under carbon management pathways. 

Specifically, the food processing sector plays a unique role in bridging the energy and agri-food sectors. 
It transforms raw or primary agricultural materials into processed consumer-ready products, thus 
augmenting the value of the agri-food supply chain and constituting a significant proportion of the total 
food cost. Therefore, the inclusion of the food processing sector in global multi-sectoral dynamic 
modeling, effectively completing the agri-food supply chain, enhances the portrayal of food prices. This 
adjustment enables the model to more accurately capture the transmission of price changes from primary 
agricultural resources to final food products. Furthermore, by explicitly incorporating the energy 
consumption of food processing and its interconnectedness with food production, the projection of food 
processing energy demand is improved. This integration also provides the flexibility to construct future 
scenarios pertaining to the energy efficiency of food processing. Simultaneously, it enables the tracing 
of energy price fluctuations to resultant changes in food prices arising from food processing. Enhancing 
the depiction of the food processing sector also lays the foundation for subsequent investigations, such 
as: (1) delving deeper into the segmentation of the food processing sector to encompass sector-specific 
intricacies and accounting for the international trade of food processing services, and (2) exploring 
macroeconomic implications by establishing links between factor inputs (e.g., labor and capital) within 
the food processing sector and the broader economy (Patel et al., 2023). 
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Fig. 1 Share of energy use in total industry sectors that is allocated to food processing in the raw IEA 
Energy Balances data, at a GCAM region level.  The IEA sectors included here as industry sectors are 
mining and quarrying; construction; iron and steel; chemical and petrochemical; non-ferrous metals; non-
metallic minerals; transport equipment; machinery; food and tobacco; paper, pulp, and print; wood and 
wood products; textiles and leather; and industry not elsewhere specified. 
 

 

Fig. 2 Energy used in the food processing sector (food and tobacco) by fuel in the IEA Energy Balances 
raw data in 2015 at a GCAM region level. 
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2. Description of changes (Methods) 

2.1. Sector structure 

Energy use in food processing is dominated by process heating, including boilers and direct heating, 
most often obtained from coal, natural gas, or biomass sources. Most electricity use is for cooling and 
refrigeration as well as machine driven processes and mechanical equipment. Processes used in the 
sector vary widely depending on the food and desired output product, but can include drying, 
pasteurization, baking, melting, cooling or chilling, freezing, extraction, filtration, fermentation, size 
reduction processes, mixing, peeling, washing, and packaging. Due to the diversity and complexity of 
the processes involved, we structure the sector based on fuel use; however, to reflect the division 
between process heating and other solely electricity-based processes and prevent unrealistic fuel 
switching between them, we incorporate an intermediate supplysector of process heat. This sector 
includes all of the technology and fuel options for heat production. Thus, the overall food processing 
sector then takes in both process heat food processing and a direct input of electricity, with the latter 
representing all non-heating uses of electricity (Fig. 3). The sector is linked to the food demand module, 
such that calorie consumption sets the demand for food processing energy use, with regionally varying 
coefficients of energy demand per calorie consumed. 

 

Fig. 3 Structure of the food processing sector, including technologies and fuels used for process heat 
generation, inputs to the overall food processing sector, and the link to food demand.  The left side of the 
diagram indicates the division of energy demands into process heating and electricity; the right side shows 
the sources of process heat represented in the model. Combined heat and power technologies, also known 
as cogeneration technologies, are abbreviated as cogen in this figure. 
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For process heat generation, we include both conventional options, including biomass, coal, gas, district 
heat, and refined liquids-based technologies, as well as electricity-based technologies (including both a 
standard electricity technology, representing direct electrification of process heat, and an electric heat 
pump technology). As the food processing sector is one of the industrial sectors thought to have a 
relatively high potential for the use of solar thermal energy, we also model two solar-equipped 
technologies, gas with solar and electricity with solar (IEA-ETSAP & IRENA, 2015; Schoeneberger et 
al., 2020; Sharma et al., 2017; Taibi et al., 2012). These are represented as technologies that combine a 
solar thermal system with another source of process heat, as solar thermal units are unlikely to be able to 
supply all the necessary process heat demand (even when paired with storage) due to variations in solar 
radiation intensity (IEA-ETSAP & IRENA, 2015; McMillan et al. 2021). Note that we do not model any 
CCS-equipped or hydrogen-based technologies for food processing process heat generation, as neither 
of these types of technologies is expected to play a substantial role in decarbonization pathways for the 
food processing sector because of the relatively lower energy demands (and resulting CO2 emissions) on 
a per-facility or per-output basis that make costly CCS investments illogical and the dominance of low 
temperature heat demands that are better satisfied by electrification or renewables rather than hydrogen 
(Cresko et al., 2022; Worrell & Boyd, 2022). 

The linkage to food demand is accomplished by including an input of food processing to each of the 
food crop technologies, as shown in Fig. 4. In the current implementation, all crops take in one "food 
processing calorie" per crop calorie (efficiency = 1). This representation is analogous to a food 
processing sector that manufactures food products (measured in calorie units) through a combination of 
an aggregated food calorie input and food processing services. The indexing of the food processing 
service to calorie units simplifies the linkage within the Leontief production framework. While it is 
possible that the intensity of the food processing service usage varies across GCAM sectors (e.g., staples 
vs. non-staples or crops vs. meats), we do not have quality information to distinguish it by sector since 
(1) the food processing energy demand is only available at the regional level and (2) our food data is 
highly aggregated, e.g., including both primary and processed. However, the current representation 
could be refined in the future by having varied efficiencies between crops to reflect differences in their 
average levels of processing, should adequate data on this become available. Furthermore, these 
efficiency factors offer the opportunity to formulate future scenarios that reflect advancements in 
technology within food processing sectors or composite shifts in aggregation. 
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Fig. 4 Linkage between food demand and food processing, indicating how food demand sets the demand 
for food processing energy use. 

2.2. Calibration and energy use data infilling  

We use IEA data on energy use in food processing (sector FOODPRO in the IEA energy balances). 
These data are paired with calorie consumption by region, calculated within gcamdata from FAO data, 
to obtain historical coefficients of food processing energy use per calorie consumed by region.  

For some regions, IEA data on food processing energy use is incomplete, leading to unrealistically low 
energy use coefficients. This is a result of the IEA's convention for handling cases in which the 
industrial breakdown of the use of a particular fuel is not available; in this situation, the IEA allocates all 
of that fuel use to the non-specified industry. This leads to a large portion of the total industry energy 
use being categorized as non-specified industry for some regions where data are limited, and 
correspondingly low energy use in other industrial sectors. Unlike some other industrial sectors, such as 
steel or chemicals production, which may not have a notable share in the economy in all regions, we 
expect at least some energy to be consumed for food processing in all regions. Thus, infilling energy 
data for regions with very low food processing energy use coefficients and high fractions of their total 
industry energy use in non-specified industry is warranted. 

To perform this infilling, we first fit a linear model between food processing energy use, calorie 
consumption, and GDP for regions with sufficient IEA food processing energy use data. Specifically, we 
use data for regions and years from 1990 onwards in which the fraction of total industry energy in non-
specified industry energy use is less than 0.5 and the fraction in food processing is greater than 0.01, or 
even if the non-specified industry fraction is high, the food processing fraction is greater than 0.1. The 
IEA food processing energy use data that fit this criteria and thus are used in the model fitting are shown 
in Fig. S1. 
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We tested a variety of best fit models, including different options for the predictor variables, ultimately 
determining that a linear model between food processing energy use, calorie consumption of non-
staples, and GDP, incorporating regional fixed effects, fit the data well and generated reasonable 
predictions for infilled energy values for regions with limited data. The final model used is shown 
below; its R squared value is 0.95. 

 

The value of c represents the standard intercept derived from the best fit model and is included for all 
regions. d_R represents the regional fixed effects and thus is only included for regions that were used in 
the calculation of the linear model. Regions without sufficiently complete IEA data for any years, and 
thus that were not included in the calculation of the linear model, have no value for d_R. The resulting 
regionally-varying intercepts are shown in Table S1. 

When performing the infilling of food processing energy use data, we use the same criteria specified 
above (but inverted) to determine which regions and years to infill data for (i.e., from 1990 onwards 
when the fraction of total industry energy in food processing is less than 0.01, or the fraction in non-
specified industry is greater than 0.5 and the fraction in food processing is less than 0.1), plus an 
additional requirement that the coefficient of food processing energy use per calorie consumed must be 
less than the minimum value from the data deemed "reasonable" and used to calculate the linear model 
(0.000413 EJ/Pcal). (Note that allowing for the evaluation of the former part of this criteria within 
gcamdata required generating a new prebuilt data table containing the fraction of total industry energy 
from the IEA Energy Balances that in the food processing sector and the fraction that is in non-specified 
industry, at a GCAM region level.) For the regions and years that meet these criteria and require 
infilling, we calculate the predicted food processing energy use using Equation 1 and determine the 
difference between the energy use reported by the IEA and this predicted value. We then pull energy 
from the remaining "other industry" energy use and add it to food processing to counterbalance this 
difference and bring up the food processing energy use to meet our predicted values. (Note: the quantity 
of each fuel pulled from "other industry" is calculated as the total amount of energy that needs to be 
infilled multiplied by each fuel's share of the remaining "other industry" energy use.) The resulting final 
food processing energy use for regions where infilling is performed is shown in Fig. 5; in that figure, 
original indicates the food processing energy use from the raw IEA Energy balances data, infill indicates 
the quantity of energy that is pulled from "other industry", and updated indicates the final food 
processing energy use (updated = original + infill) which matches the predicted food processing energy 
use calculated using the Equation above. 
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Fig. 5 Food processing energy use, before and after infilling, for regions where infilling is performed.  
Original indicates the raw data from the IEA Energy Balances for food processing energy use. Infill 
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indicates the quantity of energy pulled from "other industry" and added to the original raw data to generate 
the updated values, which represent the final estimates for food processing energy use for these regions 
(updated = original + infill). The updated values, when summed over all fuels, are the predicted values for 
food processing energy use generated using Equation 1. Note that, as visible in the figure, some regions 
only had infilling performed in certain years; years with infill = 0 had no infilling, while years with infill 
> 0 did have infilling performed. 

2.3. Linking primary agricultural supply to food demand  

In GCAM v7.0, a new primary commodity equivalent approach has been developed to establish a 
connection between primary agricultural supply and final calorie consumption (see CMP360; Zhao and 
Wise, 2023). This approach relies on recently updated FAO Supply-Utilization Account and Food 
Balance Sheet datasets, enabling the aggregation and tracing of physical flows along the vertical 
agricultural supply chain. GCAM represents primary agricultural production technologies, 
encompassing 17 GCAM crop commodities (aggregated from about 180 FAO crop items) and 6 GCAM 
livestock commodities (aggregated from over 60 FAO livestock items). The food availability by crop, in 
million tonnes, as reflected in the supply utilization balance, is converted to calorie consumption using 
the calorie intensity information, compiled based on historical data. These calorie values by crop are 
then aggregated into 5 staple food commodities and 15 non-staple food commodities (Zhao et al. 2024). 

To facilitate the integration of the food processing service into the existing GCAM food system, we 
index the food processing service output to total food calorie consumption so that they have the same 
unit, i.e., peta-Calories (Pcal) or peta-kilocalories. In particular, we define the food processing energy 
intensity (EJ/Pcal) as a ratio between the total food processing energy demand (EJ) and the total food 
calorie consumption in a region. The food processing energy intensity, derived based on historical data, 
depicts the food processing energy use per calorie supplied. The resulting coefficients of food 
processing energy use per calorie consumed in 2015, before and after infilling, are shown in Fig. 6. The 
future food processing energy requirement for each region in each period is determined by multiplying 
the region’s endogenously calculated food demand (Pcal) with its food processing energy intensity. 
Currently, these 2015 coefficients are maintained for all regions in all future periods; however, this 
could be refined with future work to develop varied scenarios for the evolution of these food processing 
energy use coefficients with time, reflecting different socioeconomic development trajectories. 

Notably, the feedback is currently one way. I.e., food demand is driving food processing service, but not 
the other way around. For food prices, we now need to add the food processing cost to the primary part 
(what we had before) in an ex-post manner. If we fully integrated the two (allowing price responses; in 
future work), the food processing cost would be passed to food prices endogenously (and there could be 
energy price change induced-dietary changes). 
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Fig. 6: Food processing total energy use coefficients by region, before and after infilling, in 2015. Regions 
where original = updated had no infilling performed in 2015. 
 

2.4. Technology specifications 
2.4.1. Technology costs  

The technology costs assumed are shown in Table S2. For gas, gas cogen, electric, and electric heat 
pump technologies, costs are calculated from data in Rissman 2022, "Decarbonizing Low-Temperature 
Industrial Heat in the U.S.", for natural gas boilers (with and without cogen), electric boilers, and 
electric heat pumps. This thus assumes that boilers are a representative technology for the food 
processing sector, which is a reasonable assumption to make as data suggests that boilers tend to 
consume 60% or more of the natural gas used in food processing (see, for example, Compton et al. 
2018). We use the higher temperature (100-180 degrees C) heat pump data from Rissman 2022, to cover 
all potential heating demands in the food processing sector (Arpagaus et al., 2018; Schoeneberger et al., 
2020; IEA-ETSAP & IRENA, 2015). To calculate the levelized non-energy costs in $/GJ, a capacity 
utilization factor of 31% is assumed (this is the average capacity factor for food processing boilers in the 
U.S., according to the report "Characterization of the U.S. Industrial/Commercial Boiler Population"), 
alongside a 25 year lifetime for capital cost amortization (see "How to Extend Boiler Life"; 
Gowreesunker et al., 2018; IEA-ETSAP, 2010) and a 10% discount rate. Refined liquid technologies are 
assumed to have the same non-energy costs as gas technologies, while coal and biomass technologies 
are assumed to have 2.5 higher costs, based on estimates of the relative costs of boilers with these fuels 
from the Energy Efficiency and Conservation Authority of New Zealand. District heat-based 
technologies are assumed to have the same non-energy costs as gas technologies.  

https://energyinnovation.org/wp-content/uploads/2022/10/Decarbonizing-Low-Temperature-Industrial-Heat-In-The-U.S.-Report-1.pdf
https://energyinnovation.org/wp-content/uploads/2022/10/Decarbonizing-Low-Temperature-Industrial-Heat-In-The-U.S.-Report-1.pdf
https://www.sciencedirect.com/science/article/pii/S1466856418301917
https://www.sciencedirect.com/science/article/pii/S1466856418301917
https://www.energy.gov/sites/prod/files/2013/11/f4/characterization_industrial_commerical_boiler_population.pdf
https://www.tpctraining.com/blogs/news/how-to-extend-boiler-life
https://www.mdpi.com/1996-1073/11/10/2630/htm
https://iea-etsap.org/E-TechDS/PDF/I01-ind_boilers-GS-AD-gct.pdf
https://www.eeca.govt.nz/insights/eeca-insights/biomass-boilers-for-industrial-process-heat/
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For the solar-equipped technologies, we calculate the costs associated with both the solar thermal system 
and the other fuel source. We assume that the installation of a solar thermal unit would not affect the 
selected installed capacity of the other technology (e.g., the gas boiler) even when paired with storage, 
as when the solar thermal unit is not able to operate (such as on a rainy or cloudy day) and the stored 
energy has been exhausted, the same maximum power will be required. The solar thermal unit will 
displace some of the energy that would have otherwise been produced by the other fuel source, but the 
total annual output of the combined system will be the same. Thus, we can obtain the costs of gas with 
solar and electricity with solar as the sum of the levelized costs for the gas/electricity component and the 
solar component. For the solar thermal portion of the system, we use technology costs associated with 
parabolic trough collectors (PTCs), which can be designed to produce low to medium-high temperature 
heat. Though most heat demands in the food processing sector are for relatively low temperature heat 
(<120 degrees C)–which can also be produced using other, lower cost collector types–we make a 
conservative estimate in using the higher costs associated with PTCs to ensure that all heat demands for 
the sector can potentially be covered by this representative technology and because some existing 
analyses have considered and/or implemented these collectors in solar thermal systems for the food 
processing sector (Arpagaus et al., 2018; Schoeneberger et al., 2020; IEA-ETSAP & IRENA, 2015; 
Sharma et al., 2018). We use the median investment cost for PTCs for industrial process heat (for 
systems > 400m^2 in gross area) from Schoeneberger et al., 2020. We calculate the average installed 
capacity of current solar process heat installations in the food processing sector also using data from 
Schoeneberger et al., 2020, and assume this value as a representative installed capacity for our cost 
calculations. We assume that annual OPEX costs are 1.5% of the total CAPEX costs, as literature values 
range from 1-5% for solar industrial process heat systems, with most on the lower end of this range 
(Allouhi et al., 2017; Lemos et al., 2019; Lillo et al., 2017; Meyers et al., 2018; Sharma et al., 2018). 
Reported lifetimes range from 15-30 years (Kurup and Turchi, 2019; Lemos et al., 2019; Lillo et al., 
2017; Meyers et al., 2018; Sharma et al., 2018; Sturm et al., 2015); we use 25 years as it is in the middle 
of this range and is consistent with the assumptions for the fossil-based technologies. We again use a 
10% discount rate for the solar thermal portion of the system.  

For generating the CapitalTracking tables needed for integration with GCAM macro, we employ a 
capital ratio of 0.7 and a lifetime of 25 years, slightly different from the values of 0.9 and 30 years 
assumed as default for the other industry sectors but more consistent with the values observed in the 
literature for food processing and used in the calculations of technology costs described here.   

We estimate the overall food processing supplysector non-energy costs using Global Trade Analysis 
Project (GTAP) data (Aguiar et al., 2019). We obtain GTAP data for the food processing sector, 
utilizing specifically the household and government consumption data for 2014. We calculate the sum of 
expenditures on FoodProduct and BeverageTobacco, the two categories representing processed foods, to 
obtain total costs for the food processing sector (or value output of the sector) according to GTAP data. 
From these values, we then exclude the primary agricultural input costs and subtract the total energy 
costs for the food processing sector from GCAM output values for 2015. These total energy costs 
incorporate both the costs associated with electricity and other fuel inputs into food processing and 
process heat food processing, as well as the non-energy costs associated with the process heat food 



11 
 

processing technologies (which have gotten folded into the "energy costs" of process heat food 
processing). Thus, the resulting difference between the GTAP total costs and the GCAM "energy" costs 
represents the portion of the non-energy costs that are currently not being captured in GCAM and that 
should be included as the non-energy costs for the overall food processing sector. We divide these costs 
by food demand to obtain the non-energy costs on a per calorie basis. We perform this calculation on a 
regional level, but also calculate a global weighted average non-energy cost (weighted by calorie 
consumption) which is used as the global value in the global technology database. The global 
technology database value will be employed for any new regions added if they are not explicitly 
specified in A328.regionaltech_cost.csv (Table S3); we include a warning in gcamdata that indicates if 
there are new regions added that are not specified in this file and that highlights that the global default 
value will be used for those regions. Also note that we use GTAP costs for 2014 and GCAM costs for 
2015, as these are the closest years present in the two datasets; this may introduce some variations, but 
for the purposes of estimation should be reasonable. 

2.4.2. Technology coefficients  

For most technologies for process heat generation, coefficients are taken from GCAM-USA assumptions 
for industrial boilers with each of these fuels (Table S4). The coefficient for electric heat pumps is from 
Rissman, 2022. The coefficient for district heat is assumed to be 1. For solar-equipped technologies, the 
solar fraction (fraction of energy supplied by the solar thermal system; i.e., the share of the desired total 
energy load that can be met by solar energy) is assumed to be 0.2, as literature values range from 0.14-
0.6 depending on the type of solar collector and location/climate characteristics (solar irradiance, 
temperature, etc.), but with most values in the 0.15-0.3 range (Allouhi et al., 2017; IEA-ETSAP & 
IRENA, 2015; Kurup & Turchi, 2019; McMillan et al., 2021; Meyers et al., 2018; Sharma et al., 2018). 
This leads to a 20% reduction in the coefficient of the fuel that the solar thermal system is paired with. 
The efficiency of conversion of solar energy into heat is assumed to be 60% based on data for PTCs in 
the appendices of the report "Renewable Energy Options for Industrial Process Heat" (Lovegrove et al., 
2019). 

2.4.3. Technology vintage and retirement  

We use the same capital stock retirement assumptions employed in other detailed industry sectors for all 
technologies except electric heat pumps and technologies paired with solar thermal systems (Table S5). 
Electric heat pumps are often assumed to have lifespans in the 15-25 year range (Jibran S. Zuberi et al., 
2022; Obrist et al., 2022); here, we use a 25 year lifetime for consistency with the heat pump 
assumptions in the paper sector breakout. Solar thermal collector system lifetimes tend to range from 15-
30 years (Kurup and Turchi, 2019; Lemos et al., 2019; Lillo et al., 2017; Meyers et al., 2018; Sharma et 
al., 2018; Sturm et al., 2015); we use 25 years as a mid-range value for electricity with solar and gas 
with solar systems.   

2.4.4. Share weights and logit  
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As with the other detailed industry sectors, we employ the modified logit discrete choice model. Logit 
exponents for the process heat food processing subsectors are set to -6, with the overall food processing 
sector logit exponent set to zero to represent a fixed relationship between electricity and heat. This 
parameter should be examined and tested in future work. For all regions, electricity subsector share 
weights for process heat food processing are zero in the base year, as all historical electricity 
consumption in the food processing sector is assumed to be for non-heating uses since current levels of 
electrification of process heat in the sector are low (Atuonwu & Tassou, 2021). We set these share 
weights to increase linearly to 0.5 by 2050, and remain constant thereafter, to allow for the introduction 
of electric process heating with time but at a moderate level. For all other subsectors, we maintain fixed 
share weights through 2100. At the technology level, we set all technology share weights to 1 excepting 
the cogen technologies, electric heat pumps, and technologies paired with solar; for these technologies, 
share weights increase linearly from 0 in 2020 to 0.5 in 2100, reflecting a measured phase-in. 

 

2.4.5. Water use  

Food processing sector water withdrawal intensities are calculated for Canada and the United States 
using food processing industry water withdrawal data from Cameron et al. (2014) for Canada and from 
Rehkamp & Canning (2018) and Rehkamp et al. (2021) for the US, paired with calorie consumption 
data from gcamdata's food demand module. For all other regions, water withdrawal intensities are 
obtained by assuming that the level of water use in food processing scales with the level of energy use in 
food processing. For each region, the water withdrawal intensity in food processing is thus calculated as 
the US's food processing water intensity scaled by the ratio of that region's food processing energy use 
coefficient to the US's food processing energy use coefficient in 2015. These withdrawal intensities are 
then used to compute total withdrawals, as well as total consumption using the consumption to 
withdrawal ratio in Vassolo & Döll (2005). Water withdrawals and consumption for the food processing 
sector are subtracted from the total industry water use data. 

 

2.4.6. Emissions 

Consistent with the methodology for most other detailed industry sectors, CEDS combustion-related 
emissions from food processing (1A2e_Ind-Comb-Food-tobacco) are mapped to the food processing 
sector by fuel type. 

For consistency with the energy data infilling, in which some of the other industrial energy use data is 
reallocated to the food processing sector, we also re-map some of the other industrial energy use non-
CO2 emissions to the food processing sector. To do this, we calculate the fraction of the remaining other 
industry energy use data that is reallocated to food processing in the infilling process for each region, 
year, and fuel. We then apply this fraction to the non-CO2 emissions from the other industry sector to 
obtain the quantity of non-CO2 emissions to remove from other industry and reallocate to food 
processing (again for each region, year, and fuel). 
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Note that while some process emissions from the CEDS sector "2H_Pulp-and-paper-food-beverage-
wood" are also from food processing, these are currently included as undifferentiated industrial process 
emissions elsewhere in GCAM. Similarly, non-trivial CH4 emissions are from industrial wastewater 
treatment associated with food processing (in the US, particularly from meat and poultry processing), 
but industrial wastewater CH4 emissions are not broken out separately in current global inventories, so 
they are not included in the food processing sector. 

 

2.5. Overview of key changes in GCAM, gcamdata, and Model Interface queries   

Table 1 key data and code changes made in gcamdata and queries 

Data file/R chunk/CPP Input/changes  

zenergy_L1328.food_processing.R 
(added) 

energy/A328.globaltech_coef.csv (added) 
energy/A328.energy_infill_model_coefs.csv (added) 
energy/A328.energy_infill_model_intercepts_R.csv (added) 

zenergy_L2328.food_processing.R 
(added) 

energy/calibrated_techs.csv (modified) 
energy/A328.sector.csv (added) 
energy/A328.subsector_interp.csv (added) 
energy/A328.subsector_logit.csv (added) 
energy/A328.subsector_shrwt.csv (added) 
energy/A328.globaltech_coef.csv (added) 
energy/A328.globaltech_cost.csv (added) 
energy/A328.regionaltech_cost.csv (added) 
energy/A328.globaltech_shrwt.csv (added) 
energy/A328.globaltech_retirement.csv (added) 
energy/A328.demand.csv (added) 

zenergy_xml_food_processing.R 
(added) Generate xml 

zenergy_L232.other_industry.R 
(modified) 

Modified input of remaining "other industry" energy to come from food 
processing chunk output 

zemissions_L112.ceds_ghg_en_R_S_
T_Y.R (modified) 

emissions/CEDS/ceds_sector_map.csv (modified) 
emissions/CEDS/CEDS_sector_tech_combustion.csv (modified) 
emissions/CEDS/CEDS_sector_tech_combustion_revised.csv (modified) 
emissions/A51.max_reduction.csv (modified) 
emissions/A51.min_coeff.csv (modified) 
emissions/A51.steepness.csv (modified) 
 
Modified input files to include food processing process heat technologies; 
modified R chunk to take an input of food processing energy use and to 
reallocate some "other industry" CEDS non-CO2 emissions to food processing 
for consistency with the energy data infilling and reallocation. 
 

zwater_L232.water_demand_manufac
turing.R (modified) 

water/food_mfg_intensity.csv (added) 
 
Modified to calculate food processing sector water use as the product of 
regionally-varying estimated water intensities and food production, and subtract 
the resulting values from aggregate industry water use 

zwater_xml_water_demand_industry.
R (modified) 

 Modified to include food processing sector water withdrawal and consumption 
coefficients 
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zsocio_L281.macro_account_tracking
.R (modified)  Modified to include food processing sector in final energy service tracking 

generate_package_data.R (modified) 

Modified to include additional level 2 data names as well as to indicate a new 
prebuilt data output, which contains the fraction of total industry energy from the 
IEA Energy Balances that is in the food processing sector and the fraction that is 
in non-specified industry, as these data are needed to determine which regions 
and years will have infilling performed on food processing energy use data. 

constants.R (modified) 

Modified to include new constants needed for the food processing sector 
breakout, in both the energy and water chunks, specifically for performing the 
infilling of energy use data and for estimating regional variation in water use 
intensities. Also modified constants for GCAM macro to make sure food 
processing is properly incorporated. 

zgcamusa_L232.industry.R and 
zgcamusa_xml_industry.R (modified) 

Modified to ensure the food processing sector information is deleted 
appropriately for GCAM USA 

energy/mappings/IEA_flow_sector.cs
v (modified) 

Modified to include mapping for IEA food processing energy use to GCAM food 
processing sector 

ModelInterface_headers.txt Modified to include an additional header 

output/queries/Main_queries.xml 
(modified) 

Added queries for the food processing sector. Modified some of the total final 
energy and industry total final energy queries as needed to exclude the 
intermediate supplysector of process heat food processing and to ensure that 
solar energy inputs to food processing are captured. 

 
 
 
3. Shared policy assumption (SPA) GCAM validation runs 

In accordance with the GCAM CMP convention, we present GCAM projection results, comparing the 
Updated (FoodProc) branch with the Master branch (CMP-370; Breaking out pulp and paper industry) for 
reference and RCP 2.6 scenarios across shared socioeconomic pathways (GCAM core & SSP1-5 
assumptions; excluding SSP3-RCP2p6 and SSP5-RCP2p6). Note that SSP5-2p6 wasn't solved in the food 
processing branch, so ignore the comparison of this scenario. 

 

We provide key global results in the figures below, with more detailed results available in supplementary 
information.  
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Global industrial output, with a focus on food processing and other industrial sectors. The food processing output (food calories) is indexed to food 
demand. Since the feedback is only one way, the impact of the update on the food calorie consumption is minimal. 
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Global industrial energy input, with a focus on food processing and other industrial sectors. Similar to industrial outputs (above), only food 
processing and other industrial sectors are affected by the updates since food processing is separated from the other industrial sector. In the base year, the 
net change is indeed zero, confirming the consistency with the data processing.  
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Further comparison and decomposition indicate (1) the energy input increase in food processing (driven by food demand) is lower than the decrease in 
other industrial sector and (2) there are some changes in energy sources, e.g., on average, less electricity and H2 uses in food processing compared to the 
other industry sector.  
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Global food processing electricity and process heat inputs. Note that the relative relationship between electricity input and the aggregated processed 
heat input is fixed at the regional level, while substitutions among technologies producing process heat are possible.   
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Global food processing water consumption and withdrawal. 
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Impact of the updates on CO2 emissions by sectors. There are relatively higher emissions from food processing but fewer emissions from other 
industries and electricity. The net total also decreased in reference, consistent with changes in energy inputs. 
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Food processing cost (left) and primary agricultural price changes (right). Developed regions have higher costs of food processing since more food 
processing services are used. The food processing cost may be affected by the mitigation policies due to changes in energy prices. However, the 
variation is small since the majority of the cost is non-energy. The model development has a negligible impact on primary agricultural prices (ignore 
SSP5-RCP2p6). In addition, if deriving an agroeconomic-wide food price index, both primary supply cost and processing cost need to be considered.  
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Confirming the impacts of the food processing break out on the overall land results are small.  
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Confirming the impacts of the food processing break out on the overall emissions is small. In reference, the lower total FFI (Fossil Fuel and Industry) 
emissions were driven by the lower food processing emissions (than the corresponding other industrial emissions before the breakout).  
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The impact of the updates on climate variables and the carbon cycle is also small. There are relatively higher emissions from food processing but 
fewer emissions from other industries and electricity. The net total also decreased in reference, consistent with changes in energy inputs. 
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4. Future work 

a) International trade of food processing "service" 

Not representing the trade of food processing service is a limitation of this work. The food processing 
service (with a unit of calories of this service) is linked to food demand with a fixed coefficient. 
However, all food processing energy is domestically supplied. For example, if a region is a large 
importer of processed food, we will underestimate the energy intensity of food processing. Thus, instead 
of assuming the food processing energy intensity is domestic, we should understand it as "trade-
adjusted" energy intensity. That is, if a region consumes more food, the import of the service will also be 
higher so domestic energy consumption won't increase as much. It's not a perfect explanation as the 
trade partner is not reflected. In addition, a related issue is that we do not have energy intensity by food 
items. Instead, we only have IEA total food processing energy consumption. That will be another 
important area to work on further. That is, the trade modeling will need more detailed information on the 
food processing sector. 

b) Food processing technology nonenergy cost (Table 2) 

Currently, refined liquid technologies are assumed to have the same non-energy costs as gas 
technologies, while coal and biomass technologies are assumed to have 2.5 higher costs (based on data 
in a developed region). These assumptions need to be revisited to recognize the potential regional 
differences.  

c) Regional cost and parameters for solar. 

The PTC efficiency should vary by region using the CSP data we use now in GCAM (since it's only 
direct sunlight that can be used, not diffuse light, as for a PV system). The cost of the solar component 
can be scaled to DNI used for CSP calculations (there's an update in the BYU branch). What that will do 
is prevent this option from coming in in regions (or ultimately US states) without good Direct Normal 
Irradiance (DNI) resources. With the correction in the BYU branch, for example, this will keep solar 
from entering in regions such as Russia, etc., which have very few sunny days (few clouds) to make any 
such system workable. 

d) Food demand responses to food processing costs 

Currently, the food processing linkage to food demand is only "volume-based" with no price 
transmissions. That is, when food demand increases (due to income or primary crop or livestock input 
cost changes), the food processing service demand also increases. But when food processing costs 
increase (e.g., due to higher energy prices), food demand won't be affected. In other words, food demand 
is not responsive to food processing cost changes. 

Technically, the linkage was implemented so that the food processing service is an input (`minicam-
energy-input`) to the food demand model. However, `price-unit-conversion = 0` implies no price 
linkage/feedback (the cost of food processing in food demand is zero). If `price-unit-conversion = 1`, 
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food processing cost changes would affect food demand. This price response has not been turned on 
mainly because we didn't differentiate the food processing service coefficient by agricultural sectors. 
This should be tested and examined in future work, e.g., when more detailed sectoral information is 
available. 
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5. Supplementary information  

Table S1 Regionally-specific intercepts of the linear model used for estimating total food processing 
energy use based on calorie consumption and GDP data. Value listed for region=default is the default 
value used for regions that were not employed in model-fitting and that will also be used for any new 
regions not specified in the GCAM input file (i.e., if any new region is broken out); a warning is 
included in gcamdata that warns the user of this if they have added a new region. The coefficients and 
intercepts of this linear model are stored in energy/A328.energy_infill_model_coefs.csv and 
energy/A328.energy_infill_model_intercepts_R.csv, respectively. 

Region d_R value (in EJ) c + d_R (in EJ) 

USA -0.2449 -0.1982 

Australia_NZ -0.0002 0.0465 

Brazil 0.3701 0.4168 

Canada -0.1334 -0.0867 

Central Asia -0.0936 -0.0469 

China 0.135 0.1817 

EU-12 0.0098 0.0565 

EU-15 -0.3552 -0.3085 

Europe_Eastern -0.0055 0.0412 

Europe_Non_EU -0.0889 -0.0422 

European Free Trade Association -0.0866 -0.0399 

Japan -0.2567 -0.21 

Mexico -0.0862 -0.0395 

Russia 0.1275 0.1742 

South America_Northern -0.0632 -0.0165 

South Korea -0.0601 -0.0134 

Southeast Asia 0.0608 0.1075 

Taiwan -0.063 -0.0163 

Argentina 0 0.0467 

Colombia -0.035 0.0117 

Africa_Eastern N/A 0.0467 

Africa_Northern N/A 0.0467 

Africa_Southern N/A 0.0467 

Africa_Western N/A 0.0467 



29 
 

Central America and Caribbean N/A 0.0467 

India N/A 0.0467 

Indonesia N/A 0.0467 

Middle East N/A 0.0467 

Pakistan N/A 0.0467 

South Africa N/A 0.0467 

South America_Southern N/A 0.0467 

South Asia N/A 0.0467 

default N/A 0.0467 

 

 

Table S2 Global technology food processing non-energy costs.  Units are 1975$/GJ for the process heat 
food processing supplysector and 1975$/Mcal for the food processing supplysector. 

supplysector subsector technology minicam.non.energy.input 1971 2010 2050 2100 

process heat food 
processing biomass biomass non-energy 2.7 2.7 2.7 2.7 

process heat food 
processing biomass biomass cogen non-energy 6.88 6.88 6.88 6.88 

process heat food 
processing gas gas non-energy 1.08 1.08 1.08 1.08 

process heat food 
processing gas gas cogen non-energy 2.75 2.75 2.75 2.75 

process heat food 
processing gas gas with solar non-energy 1.5 1.5 1.5 1.5 

process heat food 
processing 

refined 
liquids refined liquids non-energy 1.08 1.08 1.08 1.08 

process heat food 
processing 

refined 
liquids 

refined liquids 
cogen non-energy 2.75 2.75 2.75 2.75 

process heat food 
processing heat heat non-energy 1.08 1.08 1.08 1.08 

process heat food 
processing coal coal non-energy 2.7 2.7 2.7 2.7 

process heat food 
processing coal coal cogen non-energy 6.88 6.88 6.88 6.88 

process heat food 
processing electricity electricity non-energy 0.7 0.7 0.7 0.7 
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process heat food 
processing electricity electric heat 

pump non-energy 2.67 2.67 2.67 2.67 

process heat food 
processing electricity electricity with 

solar non-energy 1.12 1.12 1.12 1.12 

food processing food 
processing food processing non-energy 0.1051 0.1051 0.1051 0.1051 

 

 

Table S3 Regional food processing overall supplysector non-energy costs.  Units are 1975$/Mcal. For 
any region not specified explicitly here, the global value from the global technology database will be 
used by default. 

Region Cost (1975$/Mcal) 

Africa_Eastern 0.0293 

Africa_Northern 0.0633 

Africa_Southern 0.0705 

Africa_Western 0.0198 

Argentina 0.1261 

Australia_NZ 0.515 

Brazil 0.0955 

Canada 0.3881 

Central America and Caribbean 0.1209 

Central Asia 0.0632 

China 0.0616 

Colombia 0.0879 

EU-12 0.2039 

EU-15 0.3718 

Europe_Eastern 0.0334 

Europe_Non_EU 0.116 

European Free Trade Association 0.3691 

India 0.0145 

Indonesia 0.0522 

Japan 0.4934 

Mexico 0.2154 
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Middle East 0.0941 

Pakistan 0.0134 

Russia 0.1226 

South Africa 0.1243 

South America_Northern 0.2655 

South America_Southern 0.118 

South Asia 0.0196 

South Korea 0.1815 

Southeast Asia 0.0633 

Taiwan 0.1128 

USA 0.3258 

 

Table S4 Process heat food processing technology coefficients.  Values are unitless (EJ energy input per 
EJ heat output). 

supplysector subsector technology minicam.energy.input secondary.output 1975 2100 

process heat food 
processing biomass biomass delivered biomass  1.43 1.43 

process heat food 
processing biomass biomass cogen delivered biomass electricity 1.82 1.82 

process heat food 
processing gas gas wholesale gas  1.25 1.25 

process heat food 
processing gas gas cogen wholesale gas electricity 1.67 1.67 

process heat food 
processing gas gas with solar wholesale gas  1 1 

process heat food 
processing gas gas with solar global solar resource  0.33 0.33 

process heat food 
processing 

refined 
liquids refined liquids refined liquids 

industrial 
 1.25 1.25 

process heat food 
processing 

refined 
liquids 

refined liquids 
cogen 

refined liquids 
industrial electricity 1.67 1.67 

process heat food 
processing heat heat district heat  1 1 

process heat food 
processing coal coal delivered coal  1.25 1.25 

process heat food 
processing coal coal cogen delivered coal electricity 1.67 1.67 
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process heat food 
processing electricity electricity elect_td_ind  1 1 

process heat food 
processing electricity electric heat pump elect_td_ind  0.45 0.45 

process heat food 
processing electricity electricity with 

solar elect_td_ind  0.8 0.8 

process heat food 
processing electricity electricity with 

solar global solar resource  0.33 0.33 

 

 

Table S5 Food processing technology vintage and retirement assumptions.   

technolog
y 

lifetim
e 

shutdown.ra
te 

half.lif
e 

steepne
ss 

median.shutdown.p
oint 

profit.shutdown.steep
ness 

electric 
heat pump 25  13 0.3 -0.5 6 

electricity 
with solar 25  13 0.3 -0.5 6 

gas with 
solar 25  13 0.3 -0.5 6 

all other 
technologi
es 

40  20 0.3 -0.5 6 
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Fig. S1: Food processing sector energy use by fuel from the IEA Energy Balances raw data, only for 
regions and years that meet the criteria for sufficient data detailed above.  These data are those that are 
used to obtain the linear model between food processing energy use and calorie consumption. 
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