GCAM v6 Documentation: References

Documentation for GCAM
The Global Change Analysis Model

View the Project on GitHub JGCRI/gcam-doc


Selected GCAM Papers

Listed in reverse chronological order (newest first) by topic.

General Model Structure And Background

Calvin, K.V., Patel, P.L., Clarke, L.E., Asrar, G.R., Bond-Lamberty, B., Cui, Y., Di Vittorio, A., Dorheim, K.R., Edmonds, J.A., Al., E., 2019. GCAM v5.1: Representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development 12, 1–22.

Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, and R. Richels. 2007a. “CCSP Synthesis and Assessment Product 2.1, Part A: Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations,” U.S. Government Printing Office, Washington DC.

Kim, S.H., J.A. Edmonds, J. Lurz, S.J. Smith, and M. Wise. 2006. “The ObjECTS Framework for Integrated Assessment: Hybrid Modeling of Transportation.” Energy Journal 27: 63-91.

Clarke JF and JA Edmonds. 1993. “Modeling Energy Technologies in a Competitive Market,” Energy Economics 15(2):123-129.

Edmonds J, M Wise, H Pitcher, R Richels, T Wigley, and C MacCracken. 1996. “An Integrated Assessment of Climate Change and the Accelerated Introduction of Advanced Energy Technologies: An Application of MiniCAM 1.0,” Mitigation and Adaptation Strategies for Global Change 1(4):311-339.

Edmonds, J. and J. Reilly. 1983. “A Long-Term, Global, Energy-Economic Model of Carbon Dioxide Release From Fossil Fuel Use,” Energy Economics, 5(2):74-88.


Wise, M., Patel, P., Khan, Z., Kim, S. H., Hejazi, M., & Iyer, G. (2019). Representing power sector detail and flexibility in a multisector model. Energy Strategy Reviews, 26, 100411. https://doi.org/10.1016/j.esr.2019.100411

Clarke, L., Eom, J., Marten, E. H., Horowitz, R., Kyle, P., Link, R., et al. (2018). Effects of long-term climate change on global building energy expenditures. Energy Economics, 72, 667–677. https://doi.org/10.1016/j.eneco.2018.01.003

Muratori, M., Ledna, C., McJeon, H., Kyle, P., Patel, P., Kim, S.H., Wise, M., Kheshgi, H.S., Clarke, L.E., Edmonds, J., 2017. Cost of power or power of cost: A U.S. modeling perspective. Renewable and Sustainable Energy Reviews 77, 861–874. https://doi.org/https://doi.org/10.1016/j.rser.2017.04.055

Luckow P, MA Wise, JJ Dooley, and SH Kim. 2010. “Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios.” International Journal of Greenhouse Gas Control 4(5):865-877. doi:10.1016/j.ijggc.2010.06.002.

Edmonds, J., Reilly, J., 1983. Global energy production and use to the year 2050. Energy 8, 419–432. https://doi.org/https://doi.org/10.1016/0360-5442(83)90064-6


Turner, S.W.D., Hejazi, M., Calvin, K., Kyle, P., Kim, S., 2019. A pathway of global food supply adaptation in a world with increasingly constrained groundwater. Science of the Total Environment 673, 165–176. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.04.070

Graham, N.T., Davies, E.G.R., Hejazi, M.I., Calvin, K., Kim, S.H., Helinski, L., Miralles-Wilhelm, F.R., Clarke, L., Kyle, P., Patel, P., Wise, M.A., Vernon, C.R., 2018. Water Sector Assumptions for the Shared Socioeconomic Pathways in an Integrated Modeling framework. Water Resources Research 0. https://doi.org/10.1029/2018WR023452

Cui, R.Y., Calvin, K., Clarke, L., Hejazi, M., Kim, S., Kyle, P., Patel, P., Turner, S., Wise, M., 2018. Regional responses to future, demand-driven water scarcity. Environmental Research Letters 13, 94006.

Kim, S.H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Patel, P., Wise, M., Davies, E., 2016. Balancing global water availability and use at basin scale in an integrated assessment model. Climatic Change 136, 217–231. https://doi.org/10.1007/s10584-016-1604-6

Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., Calvin, K., Moss, R., Kim, S., 2014. Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technological Forecasting and Social Change 81, 205–226. https://doi.org/10.1016/j.techfore.2013.05.006

Liu, L., Hejazi, M., Patel, P., Kyle, P., Davies, E., Zhou, Y., Clarke, L., J Edmonds, 2014. Water Demands for Electricity Generation in the U.S.: Modeling Different Scenarios for the Water-Energy Nexus. Technological Forecasting and Social Change 94, 318–334. https://doi.org/DOI:10.1016/j.techfore.2014.11.004


Calvin, K., Wise, M., Kyle, P., Clarke, L., Edmonds, J., 2017. A hindcast experiment using the GCAM 3.0 agriculture and land-use module. Climate Change Economics 8. https://doi.org/10.1142/S2010007817500051

Muratori, M., Calvin, K., Wise, M., Kyle, P., Edmonds, J., 2016. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environmental Research Letters 11, 095004. https://doi.org/10.1088/1748-9326/11/9/095004

Calvin, K., Wise, M., Kyle, P., Patel, P., Clarke, L., Edmonds, J., 2014. Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Climatic Change 123, 691–704. https://doi.org/10.1007/s10584-013-0897-y

Wise, M., Calvin, K., Kyle, P., Luckow, P., Edmonds, J., 2014. Economic and Physical Modeling of Land Use in GCAM 3.0 and an Application To Agricultural Productivity, Land, and Terrestrial Carbon. Climate Change Economics 05, 1450003. https://doi.org/10.1142/S2010007814500031

Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-lamberty, B., Sands, R., Smith, S.J., Janetos, A., Edmonds, J., 2009. Implications of Limiting CO2 Concentrations for Land Use and Energy. Science (80-. ). 324, 1183–1186. https://doi.org/10.1038/ncb2099


Schwarber, A. K., Smith, S. J., Hartin, C. A., Vega-Westhoff, B. A., and Sriver, R.: Evaluating climate emulation: fundamental impulse testing of simple climate models, Earth System Dynamics, 10, 729–739, https://doi.org/10.5194/esd-10-729-2019, 2019.

Hartin, C.A., Patel, P., Schwarber, A., Link, R.P., Bond-Lamberty, B.P., 2015. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0. Geoscientific Model Development 8, 939–955. https://doi.org/10.5194/gmd-8-939-2015


Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., Wise, M., 2017. The SSP4: A world of deepening inequality. Global Environmental Change 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010

Thomson, A.M., Calvin, K.V., Smith, S.J., Kyle, G.P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M.A., Clarke, L.E., Edmonds, J.A., 2011. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change 109. https://doi.org/10.1007/s10584-011-0151-4

Nakicenovic, N. and Swart, R. (eds.) Emissions Scenarios 2000: Special Report of the Intergovernmental Panel on Climate Change (Cambridge, U.K.: Cambridge University Press, 2001).


Feijoo, F., Iyer, G., Binsted, M. et al, 2020. US energy system transitions under cumulative emissions budgets. Climatic Change (2020). https://doi.org/10.1007/s10584-020-02670-0

Ou, Y., West, J.J., Smith, S.J., Nolte, C.G. and Loughlin, D.H., 2020. Air pollution control strategies directly limiting national health damages in the US. Nature Communications, 11, 957 (2020). https://doi.org/10.1038/s41467-020-14783-2

Iyer G., Brown, M., Cohen, S., Macknick, J., Patel, P., Wise, M., Binsted, M., et al., 2019. Improving consistency among models of overlapping scope in multi-sector studies: The case of electricity capacity expansion scenarios. Renewable & Sustainable Energy Reviews, 116, p.109416. https://doi.org/10.1016/j.rser.2019.109416

Liu, L., Hejazi, M., Iyer, G. et al., 2019. Implications of water constraints on electricity capacity expansion in the United States. Nature Sustainability 2, 206–213 (2019). https://doi.org/10.1038/s41893-019-0235-0

Wise, M., Patel, P., Khan, Z., Kim, S. H., Hejazi, M., & Iyer, G. (2019). Representing power sector detail and flexibility in a multisector model. Energy Strategy Reviews, 26, 100411. https://doi.org/10.1016/j.esr.2019.100411

Feijoo, F., Iyer, G., Avraam, C., Siddiqui, S., Clarke L., Sankaranarayanan, S., Binsted, M., Patel, P., Patel, P., Prates N.C., Torres-Alfaro, E., Wise, M., 2018. Natural gas infrastructure development in the United States. Applied Energy, 228, 149–166. https://doi.org/10.1016/j.apenergy.2018.06.037

Hodson, E.L., Brown, M., Cohen, S., Showalter, S., Wise, M., Wood, F., Caron, J., Feijoo, F., Iyer, G., Cleary, K., 2018. US Energy Sector Impacts of Technology Innovation, Fuel Price, and Electric Sector CO2 Policy: Results from the EMF 32 Model Intercomparison Study. Energy Economics 73, 352-370 (2018). https://doi.org/10.1016/j.eneco.2018.03.027

Davidson, C., Dahowski, R., McJeon, H., Clarke, L., Iyer, G., Muratori, M., 2017. The value of CCS under current policy scenarios: NDCs and beyond. Energy Procedia 114, 7521-7527. https://doi.org/10.1016/j.egypro.2017.03.1885

Iyer, G., Ledna, C., Clarke, L. et al., 2017. Measuring progress from nationally determined contributions to mid-century strategies. Nature Climate Change 7, 871–874 (2017). https://doi.org/10.1038/s41558-017-0005-9

Iyer, G., Ledna, C., Clarke, L.E., McJeon, H., Edmonds, J. and Wise, M., 2017. GCAM-USA analysis of US electric power sector transitions. Richland, Washington: Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26174.pdf

Shi W., Ou Y., Smith S.J., Ledna C., Nolte C.G., Loughlin D.H., 2017. Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA. Applied Energy 208, 511–521. https://doi.org/10.1016/j.apenergy.2017.09.122

Zhou, Y., Clarke, L., Eom, J., Kyle, P., Patel, P., Kim, S.H., Dirks, J., Jensen, E., Liu, Y., Rice, J. and Schmidt, L., 2014. Modeling the effect of climate change on US state-level buildings energy demands in an integrated assessment framework. Applied Energy, 113, pp.1077-1088. https://doi.org/10.1016/j.apenergy.2013.08.034