
Global Change Analysis Model (GCAM) Joint Global Change Research Institute (JGCRI)

Core Model Proposal #371 December 19, 2022

1

Core Model Proposal #371:

 Miscellaneous Bug Fixes

Product: Global Change Analysis Model (GCAM)

Institution: Joint Global Change Research Institute (JGCRI)

Authors: Maridee Weber, Page Kyle, Pralit Patel

Reviewers: Ellie Lochner, Matthew Binsted

Date committed: December 19, 2022

IR document number: PNNL-34048

Related sector: various

Type of development: bugfix (C++ code, gcamdata)

Purpose: This Core Model Proposal includes a range of miscellaneous bug fixes and features,

including: reassigning gcamusa modules to be emissions modules; fixing some spelling errors;

adding a "fixed" final demand; eliminating member variables that were either duplicative or

unnecessarily marked STATE; minor solution bug fixes; and eliminating variability in iteration

counts from run-to-run even when GCAM Parallel is enabled. Note, while there are many changes

aimed at reducing memory usage or improving performance, the benefits in this regard are

relatively minor.

2

Description of Changes

Reassign GCAM-USA modules

There were three GCAM-USA modules introduced in pull request 226 / core model proposal 254

that broke the capability to disable gcamusa modules within gcamdata. These three GCAM-USA

modules dealt with emissions, and have been reassigned as follows:

original module name new module name

module_gcamusa_L169.nonghg_NEI_scaling_USA module_emissions_L169.nonghg_NEI_scaling

module_gcamusa_L170.nonghg_ceds_scaling_USA module_emissions_L170.nonghg_ceds_scaling

module_gcamusa_L270.nonghg_nei_to_gcam module_emissions_L270.nonghg_nei_to_gcam

These name changes restore users’ ability to run the driver() function in gcamdata, both with the

gcamusa modules enabled or disabled (set in constants.R). Image 1 in the validation section shows

that this reassignment resulted in no changes to the XMLs (though other components of this

proposal do result in XML changes).

Calculate Direct Air CO2 Capture (DAC) capacity

Prior to this proposal, the potential DAC "resources" assigned to each region were read in from an

exogenous data input file, inst/extdata/energy/A62.calibration.csv. However, the values in this file

were simply computed from the CO2 storage resources in each region multiplied by a scaler

calculated from an assumed DAC limit in the USA. Because the A62.calibration.csv file had hard-

wired region numbers, it didn't work for model branches with modified country-to-region

mappings, where any additional regions would effectively not have DAC included as a mitigation

option. This method is shifted so that it is entirely performed within gcamdata, and the

A62.calibration.csv file is removed. Breaking out new model regions does not require any DAC-

specific adjustments.

Fix technology naming error in buildings calibration file A44.share_serv_fuel.csv

The hydrogen update included in GCAM v6.0 added hydrogen technologies to the global buildings

module. These technologies were also added (with zero values) to the historical calibration data

table energy/A44.share_serv_fuel.csv. However, their names in the calibration table were mixed

up (e.g., residential services within the commercial sector). This mismatch was handled in

gcamdata such that the technologies ended up getting named correctly and assigned zero

3

calibration values in the building_det.xml file, so revising their names does not change the

resulting XML file constructed, but the revision corrects the incongruous items in the

A44.share_serv_fuel.csv file and avoids relying on gcamdata's fortuitous methods of naming

technologies and assigning default calibration values that circumvented the error.

Misspellings

This bugfix addresses two typos. The first is in input/policy/forcing_target_6p0.xml, where the

policy name was changed from "forcing_4p5" to "forcing_6p0". The second is in

input\gcamdata\inst\extdata\aglu for "A_agRegionalSubsector.csv" and

"A_agRegionalTechnology.csv", where "dairy" was misspelled.

FixedFinalDemand

The "fixed" final demand is simply an AFinalDemand subclass which always just returns the

exogenously specified "final demand" values regardless or price or income. This was a feature

requested for developing the iron and steel module. We add it here as such a feature is more

broadly useful for diagnostics and testing. While the code is added in this proposal, it is not utilized

for anything. An example XML is attached which swaps the existing Aluminum final demand

with the FixedFinalDemand, and results are provided in the Validation section.

Eliminate duplicative or un-needed member variables

Total Land Use Change Emissions

We store the total land use change emissions in addition to the total Above ground land use change

emission and Below ground land use change emissions. The total is always calculated as above +

below. We noticed one edge case: stopping the model in 1975 and examining the

mTotalEmissions variable reveals the forward shadow (the future uptake / emissions which

would result from the sum total of all past land use decision) wasn't calculated and won't be until

the next model period is run (the above and below were being calculated and reported

correctly). Given the mTotalEmissions member variable is duplicative and a relatively

significant amount of memory, we decided to just remove it and replace all instance where the

total was required with above + below.

mReduction in AEmissionsControl

We had been storing mReduction for each emissions control object. The only benefit of storing

this data is that it could be reported in the debug.xml file. However, given how many instances of

4

these objects we have and that they need to be marked STATE (performance critical), we decided

to avoid saving it.

Add postCalc to NonCO2Emissions

We add a postCalc method to NonCO2Emissions which allows us to move calibrating emissions

coefficients (via input-emissions) and saving emissions control adjusted emissions coefficients to

postCalc rather than each time the model iterates. This allows us to avoid marking these variables

as STATE. In addition, we move the ARRAY of control adjusted emissions coefficients from the

NonCO2Emissions object to LinearControl, which is where they are utilized. Given there are

far fewer LinearControl objects instantiated than NonCO2Emissions objects, this reduces the

total amount of memory used as well.

Node Unmanaged Land Value

We add an initial call to setUnmangedLandValue during initCalc, which effectively sets

mUnmanagedLandValue in all the LandNode objects and ensures they do not need to get set again

during World.calc, thus removing the need to mark them as STATE.

Remove carbonIncreaseRate

We remove the carbonIncreaseRate input parameter and its associated member variable in

LandAllocator and LeadLeaf, given this feature is rarely used and could be replicated in a more

generic way using price-adjust on the CO2_LUC linked GHG policy object.

Remove Land Expansion Constraint feature

We remove the landConstraintCurve feature from the ALandAllocatorItem as it is largely

duplicative of the more generic land-constraint-policy feature.

Un-tag Sector::mPrice as STATE

The sector price was mistakenly marked as STATE. It is only ever set during postCalc, so we

remove the tag.

Remove mTechChangeCalc from Technology

We remove the mTechChangeCalc and associated mAlphaZero member variables from

Technology as they are never actually utilized in practice.

5

Minor Solver bugs

We've noticed a few edge cases which can periodically cause hundreds of wasted iterations. These

changes are not likely to improve solver performance more generally. Changes include:

• Not checking if all markets are solved in the Broyden solver before taking our first "step"

(and therefore derivative which take tens to hundreds of iterations to compute). We now

do a quick check during setup and exit early if they are all solved before doing any real

work.

• When we "fail" to take a step in Broyden we would return immediately. Usually the

"failed" steps is very close to the last one, however in some rare cases it could be

significantly worse. Therefore, we simply revert and re-run the last "good" step before

returning just in case.

• In some cases, we could end up having the Preconditioner setting the price to zero, where

it will be stuck until we go a full cycle through the solver and the Preconditioner will then

"fix" the zero price the next time. We simply avoid setting to absolute zero in the first

place.

Address solution variability when re-running the same scenario

We have noticed variability in solution iteration counts even when re-running the exact same

scenario, sometimes to the point where a scenario will occasionally fail to solve. This situation is

quite frustrating to users, particularly when debugging or developing new features. It turns out

there are two main reasons for this variability:

A low probability bug in TechVintageVector

In core model proposal 281 we introduced the concept of a TechVintageVector, which an array

sized and indexed exactly to be able to hold only as much data for as many model periods for

which the Technology containing the array would operate for. One of the challenges that we

needed to overcome to accomplish that was a strategy to temporarily hold data, either default

values or set during XMLParse, before we knew what the lifetime of the technology was. To do

this we need some unique ID to serve as a key to look up from a TechVintageVector to its

temporarily stored data so the data can be transferred over when ready. We had chosen the

memory address of the TechVintageVector to serve as that key. However, in rare instances we

could feasibly run into the case that:

1. We create a TechVintageVector A in memory address X and intend to XMLParse some

value into it.

2. Later come across a delete="1" XML directive thus freeing memory address X for any

other use.

6

3. Later created a different TechVintageVector B in exactly the same memory address X

and did not intend to XMLParse any values into it.

4. When we go to initialize B we will end up giving it the data that was intended for A which

is incorrect.

The probability that this happens is very low and depends on operating systems, memory allocator

schemes, and memory demands from other processes on the system. Nevertheless, we have

verifiably observed this phenomenon.

To address this issue, we simply use a new static variable explicitly for generate "keys" for the

TechVintageVector / temporary storage look up. The new static index will continue to increase

with each new instance of TechVintageVector regardless of if they are to be deleted or not, thus

avoiding this error.

Variability from floating point values from parallel calculations

In GCAM 5.4 we enabled the use of GCAM Parallel by default and have since observed variability

in solution iteration counts even while re-running the same exact scenario. Some related bugs

were fixed in core model proposal 349, however the fundamental issue remained: Computers can

only represent Real numbers by approximation. As such, there is a possibility of Catastrophic

Cancellation such that a + b + c != a + c + b. From here it follows that if the values of a / b / c

could be computed in parallel and the exact order of completion and therefore summation could

change from attempt to attempt then we should expect slightly different results each time. In

practice we see roundoff errors in GCAM on the order of magnitude of 1e-10 in the worst case

and 1e-16 most typically. Given all the various tolerances and thresholds in the solution

algorithms, this ends up being enough to trigger different solution behaviors.

However, there are approaches for dealing with such round off errors even in the face of parallel

computations. A couple possibilities are laid out nicely in Collange 2015. In this proposal, we

opt for a relatively simple approach: apply the Kahan-Babuška-Neumaier summation method

when accumulating supplies and demand for each Market . The basic concept is to include an

extra (STATE) member variable for each supply and demand to explicitly capture and accumulate

round off / truncation errors during addToDemand / addToSupply and can then be used to apply a

correction in getDemand / getSupply, thus eliminating any variability in supplies and demands

and therefore variability in the solver and ultimate iteration counts.

Temporary fix for SSP2 + 2.6 solution issues

During each GCAM release we update the 2.6 forcing target XMLs to include an updated initial

guess for the carbon price. The idea being it should speed up the process of converging on the

carbon price that achieves the forcing target for subsequent CMPs. For SSP2 + 2.6, the updated

https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://hal.archives-ouvertes.fr/hal-00949355v3/document
https://en.wikipedia.org/wiki/Kahan_summation_algorithm

7

guess in GCAM v6.0 seems to have backfired; where the scenario fails to solve the initial guess

so bad that the model never recovers. Here we propose a temporary fix: to lower the initial guess;

the model then seems to be able to work its way back up and solve just fine subsequently.

Validation

Image 1: A file diff of the folders containing all old and new XMLs. The ag_trade.xml difference

can be explained by a misspelling (diary → dairy) and the five DAC XMLs showing differences

can be explained by revised DAC calibration.

The following are anomaly detector results. There are small variations, mostly in SSP 2 and SSP

5 2.6 W/m2 forcing target scenarios, which seem to have solved to a slightly different

climate. Note: the elimination of variability applies in this proposal but not the current core; thus,

small variations (below solution tolerance) are still expected to show up in this comparison.

8

Several changes in this proposal impact non-CO2 objects. The non-CO2 emission results show

no meaningful change (besides small variations below solution tolerance):

9

This is also the case for land use:

10

And agricultural production:

11

Performance

Many of these changes were focused on reducing memory and often more specifically targeting

STATE member variables. The reason for the focus on STATE was that, in principle, these are

performance critical and if we could get them small enough they will fit into cache lines on the

CPU and have an outsized impact on runtime. Although the notion of enough depends on

hardware. The following are some statistics from the model validation runs:

 Master Proposal

 Iterations
Scenario
Time

(sec)

Iterations /

sec

Memory

(GB)

State
(# of

vars)

Iterations
Scenario
Time

(sec)

Iterations /

sec

Memory

(GB)

State
(# of

vars)

GCAM 6,038 1,139 5.30 9.91 4,173,772 5,830 841 6.94 10.17 2,411,815

GCAM_2p6 25,046 4,277 5.86 10.53 4,173,967 25,263 3,572 7.07 10.05 2,412,140

GCAM-USA_Ref 8,760 2,855 3.07 13.63 9,106,910 7,876 2,418 3.26 13.12 5,093,624

GCAM_SSP4 6,279 1,172 5.36 10.45 4,115,053 6,990 955 7.32 10.11 2,378,763

GCAM_SSP4_2p6 22,603 3,856 5.86 10.45 4,115,314 21,883 3,237 6.76 10.03 2,379,198

Here we see only slight reduction in total memory usage ~ 500 MB (note the memory usage comes

from the Maximum Resident Set Size which unfortunately can be inconsistent as noted in the link;

the 500 MB reduction is also what we see on MacOS which seems to be more consistent in

reporting from run to run). However, there does appear to be a noticeable increase in performance

normalized by iterations / second. Note the value for the "State" column in number of state

variables which are all of type double, in terms of MB for the GCAM scenario the comparison is

32 MB vs 18.5 MB, for instance.

https://stackoverflow.com/questions/60779173/what-does-maximum-resident-set-size-mean

12

Variability:

To check variability, we simply re-run the same scenario multiple times and observe the exact

same iteration counts and a diff of the solver_log.csv is identical (except for the time stamp).

In addition, we use gcamwrapper to run a single iteration 100 times and observe any variations in

supply and demand. Doing in the in the current core we see the range from 1e-10 to 1e-16. With

the proposed branch it is exactly zero:

> sd = create_solution_debugger(g, 1)

> x0 <- get_prices(sd, T)

> fx0 <- get_fx(sd)

> d0 = get_demand(sd, T)

> s0 = get_supply(sd, T)

> d0.unsc = get_demand(sd, F)

> s0.unsc = get_supply(sd, F)

> p0.unsc = get_prices(sd, F)

>

> eval_demand <- function(dummy) {

+ evaluate(sd, x0, T, F)

+

+ get_demand(sd, F)

+ }

> eval_supply <- function(dummy) {

+ evaluate(sd, x0, T, F)

+

+ get_supply(sd, F)

+ }

> # run 100 iterations for each supply and demand all at the same price

vector and record the values

> demands <- sapply(seq(1,100), eval_demand)

> supplys <- sapply(seq(1,100), eval_supply)

> # calculate the largest variation in values by market over all 100 attempts

> rownames(demands) <- names(x0)

> vari_d <- sapply(names(x0), function(n, D) { max(D[n,]) - min(D[n,])},

demands)

> rownames(supplys) <- names(x0)

> vari_s <- sapply(names(x0), function(n, D) { max(D[n,]) - min(D[n,])},

supplys)

> sort(vari_d, decreasing=F)[1:10]

 USAcoal USAcrude oil USAnatural gas

 0 0 0

 globaluranium USAbiomass USAdistributed_solar

 0 0 0

 USAgeothermal USAonshore wind resource USAoffshore wind resource

 0 0 0

 USADDGS and feedcakes

 0

> sort(vari_s, decreasing=T)[1:10]

 USAcoal USAcrude oil USAnatural gas

 0 0 0

 globaluranium USAbiomass USAdistributed_solar

 0 0 0

 USAgeothermal USAonshore wind resource USAoffshore wind resource

https://github.com/JGCRI/gcamwrapper

13

 0 0 0

 USADDGS and feedcakes

 0

> sum(abs(vari_d))

[1] 0

> sum(abs(vari_s))

[1] 0

Fixed Final Demand:

The following is an example XML to swap the "aluminum" energy-final-demand for the

fixed-final-demand:

<scenario>

 <world>

 <region name="USA">

 <energy-final-demand name="aluminum" delete="1" />

 <fixed-final-demand name="aluminum">

 <service year="1975">3.17207479964381</service>

 <service year="1990">4.04944185218166</service>

 <service year="2005">2.48423106976744</service>

 <service year="2010">1.726</service>

 <service year="2015">1.58964429530201</service>

 <service year="2020">2.0</service>

 <!-- note the C++ will interpolate values -->

 <service year="2100">2.7</service>

 </fixed-final-demand>

 </region>

 </world>

</scenario>

Which gives in the following results:

